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Introduction

• Traditional methods for measuring rock discontinuity orientations are 
effective for small areas but inefficient and unsafe for large or 
inaccessible slopes.

• LiDAR technology enables rapid acquisition of millions of 3D points, 
creating detailed slope models.

• In this study, Terrestrial Laser Scanning (TLS) is used as the benchmark 
and compared with Unmanned Laser Scanning (ULS) mounted on 
drones.

• Combining TLS and ULS provides both high-precision detail and rapid 
wide-area coverage for geotechnical engineering applications.
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Objectives

• Acquire high-resolution TLS data along the rockslide.
• Capture ULS data to complement TLS in inaccessible areas.
• Combine TLS/ULS data into a seamless 3D dataset.
• Compare the discontinuity orientation measured with TLS and ULS



LiDAR Background

• Laser – “Light Amplification by the Stimulated Emission of Radiation”.
• First built in 1960 by Theodore H. Maiman. 

• LiDAR – “Light Detection and Ranging”
• Developed shortly after the laser as a surveying tool.

• TLS (Terrestrial Laser Scanning): Ground-based LiDAR, tripod-mounted
• ULS (Unmanned Laser Scanning): LiDAR integrated with drones (UAS)
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LiDAR Background (cont.)

LiDAR components
• Transmitter – generates laser pulses
• Optomechanical system – directs and 

scans the beam
• Receiver/Recorder – detects returns 

and records data
• Together, these components produce 

a 3D point cloud of the surface
Basic components of a TLS instrument 
(Heritage and Large, 2009).
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LiDAR Background (cont.)

How LiDAR Creates a Point Cloud
• A laser pulse is transmitted toward a target surface
• Energy is reflected to the receiver
• Process repeats millions of times per second
• Result: a dense 3D point cloud resembling a detailed image
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LiDAR Background (cont.)

From Points to 3D Space
• Each laser return is stored as X, Y, Z coordinates relative to the 

scanner.
• Points also include reflectivity (intensity) information
• By tying scans to field control points, local data can be transformed 

into a geographic coordinate system
• Result: every point can be accurately located in real 3D space
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LiDAR Background (cont.)

LiDAR Data Processing
• Field scans produce a raw point cloud
• Data must be processed to extract measurements
• Software used in this study:

• Riegl RiScan Pro and RiProcess
• Trimble UAV PosPac
• LIS GeoTec Plugin – dip/dip direction, pole plots
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LiDAR Background (cont.)

Geotechnical Outputs
• Surface Normals – orientation of 

slope faces
• Dip & Dip Direction –

discontinuity measurements
• Density Plots – identify clusters 

and dominant sets
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Methodology

Field Data Data 
Processing

Discontinuity
Orientation Mitigation
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Methodology (cont.)

TLS Riegl VZ-2000i
• Pulse rate: up to 1.2 MHz
• Data capture: 500,000 

measurements/sec
• Field of view: 100° vertical ×

360° horizontal
• Range: up to 2,500 m with 5 

mm accuracy
• Integrated GNSS RTK for 

positioning
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Methodology (cont.)

Riegl VUX-120 (Drone-mounted)
• Pulse rate: up to 2.4 MHz
• Measurement rate: 2,000,000 

points/sec
• Scan speed: 400 lines/sec
• Flight altitude: up to 720 m (2,350 ft)
• Field of view: 100°
• Weight: 2.3 kg
• Nadir, forward, and backward 

scanning capability
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Methodology (cont.)

Drone Platform - Harris Aerial
Carrier H6 Electric

• Max payload: 17.6 lbs (8 kg)
• Wheelbase: 5.3 ft
• Propeller size: 29 in
• Empty weight: 21.5 lbs (9.8 kg)
• Max take-off weight: 55 lbs (25 kg)
• Max flight time: 48 minutes
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Case Study – PR-52 Rockslide

• Date: November 5, 2022 
(following Hurricane Nicole, 
which reached Puerto Rico as a 
tropical storm)

• Event: Rockslide blocked the 
main north-south highway of the 
Island

• Location: PR-52, Km 49.2, 
Municipality of Salinas
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Case Study (cont.)

Rockslide Location
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Case Study (cont.)

Geology of the Rockslide Site
• Slope orientation: NW-facing, above the

Lapa River
• Geologic unit: Cayey Siltstone Member, 

Cretaceous Robles Formation
• Lithology: Predominantly siltstone with

interbedded sandstone
• Engineering relevance: Bedding planes and 

lithology strongly influence slope instability 
during heavy rainfall events
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Case Study (cont.)

TLS Point Cloud – 24 Scan Positions full 
day of data collection

ULS Point Cloud – 15-minute north-
south/east-west grid
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Case Study (cont.)

TLS Point Cloud showing the Area of
Interest (AOI)

Picture showing the Area of Interest
(AOI)
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Case Study (cont.)

TLS Data – Discontinuities highlighted 
in color (note shadows on horizontal 
surfaces)

ULS Data – Discontinuities highlighted 
in color (dense horizontal coverage; 
limited vertical detail
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Case Study (cont.)

TLS Pole Plot
• Data Density: ~4.7 million points, very 

detailed dataset.

• Discontinuity Sets: Four main sets are clearly 
identified 

ULS Pole Plot
• Data Density: ~693k points, less dense than 

TLS.

• Discontinuity Sets: Equivalent to TLS
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Case Study (cont.)

Comparison TLS joint pole data with in-
situ measured joint pole data

Comparison ULS joint pole data with 
in-situ measured joint pole data
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Case Study (cont.)

• James Joyce, PhD, PG, Professor of Geology, University of Puerto Rico
• “The TLS and ULS joint pole maximum planes proved equally proficient in 

extracting the same rockslide kinematics as the in-situ directly measured joint 
planes. In fact the TLS and ULS were more accurate than the equivalent in-situ 
measured joint pole maximum plane. Therefore, both systems are capable of 
generating the critical data required for both reliable rock slope stability 
analysis and efficacious rockslide remedial design.”
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Case Studies (cont.)

Remediation for Upper Bench 
Slope
• Remediation Method: 

Geobrugg Tecco® High-
Strength Steel Wire Mesh
System

• Design Team:
• KANE GeoTech
• Suelos, PSC
• JM Caribbean Distributors, Inc.
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Case Studies (cont.)

Middle Bench Remediation
• Remediation Method: Geobrugg

Tecco® G65/3 and G65/4 Steel 
Wire Mesh System

• Anchorage: #10 Grade 75 steel
anchors

• Design Team: KANE GeoTech, 
Inc.
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TLS vs. ULS Comparison

TLS (Terrestrial Laser Scanner)
• Data Acquisition: 24 scan positions, 

full day of fieldwork
• Resolution: High-resolution vertical 

detail
• Strengths:

• Captures vertical discontinuities with
millimeter accuracy

• Limitations:
• Line-of-sight shadows (especially

horizontal surfaces)
• Time- and labor-intensive

ULS (Unmanned Laser Scanner)
• Data Acquisition: 15-minute drone

grid (N–S / E–W)
• Resolution: Dense horizontal 

coverage, less detail on steep vertical 
faces

• Strengths:
• Rapid wide-area coverage
• Safer in inaccessible slopes

• Limitations:
• Fewer details on steep walls
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Conclusions

• Both TLS and ULS provide high-resolution 3D data crucial for geotechnical and 
structural geology studies.

• TLS delivers millimeter accuracy from fixed positions, ideal for detailed 
monitoring of localized features and measuring dip direction and dip of 
discontinuities.

• ULS, deployed via drones, excels in covering large or inaccessible areas quickly 
and safely.

• Integration of TLS and ULS offers complementary strengths:
• TLS = precision and structural detail 
• ULS = broad spatial coverage and rapid deployment
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Recommendations for Future 
Work

• Time-Series Monitoring: Use repeat surveys to detect slope 
movements and deformation trends.

• Sensor Fusion: Combine LiDAR with complementary technologies 
(e.g., photogrammetry, InSAR, GBIR) for multi-source validation.

• Geotechnical Applications: Apply 3D data to advanced slope stability 
modeling and hazard assessment.

• Standards & Guidelines: Develop protocols for DOTs and consultants 
to adopt TLS/ULS workflows.
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Thank you!

“Expect the best. Prepare for the 
worst. Capitalize on what comes.” 

by Zig Ziglar
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